Research Article

Synthesis of (\pm)-6,6-[²H₆]dimethyl-11-nor- Δ^9 -tetrahydrocannabivarin-9-carboxylic acid

Shixia Feng* and Mahmoud A. ElSohly ElSohly Laboratories, Incorporated, 5 Industrial Park Drive, Oxford, MS 38655, USA

Summary

Starting from divarinol (4) using previously published procedures, (\pm) -6, 6-[²H₆]Dimethyl-11-nor- Δ^9 THCV-9-carboxylic acid (3) was synthesized for use as an internal standard in GC/MS analysis of 11-nor- Δ^9 THCV-9-carboxylic acid (2). The detection of 2 distinguishes the use of marijuana from the ingestion of Marinol[®]. Copyright © 2002 John Wiley & Sons, Ltd.

Key Words: (\pm) -6,6-[²H₆]dimethyl-11-nor-(Δ^9 -THCV-9-carboxylic acid; 11-nor- Δ^9 -THCV-9-carboxylic acid; Δ^9 -THCV; marijuana; Marinol[®]

In the past several years, forensic toxicologists have been searching for a scientifically acceptable way to distinguish the ingestion of Marinol[®], a prescription drug that contains synthetic Δ^9 -tetrahydrocannabinol (Δ^9 -THC), from the use of marijuana, an illegal drug. We have previously proposed¹ that Δ^9 -tetrahydrocannabivarin (Δ^9 -THCV, 1), a C3 homolog of Δ^9 -THC and a natural component of cannabis plant, could be used as a marker for the ingestion of marijuana (or a related product) versus Marinol[®] because 1 does not exist in Marinol[®]. Recently, we reported that 11-nor- Δ^9 -tetrahydrocannabivarin-9-carboxylic acid (2) is the major urinary metabolite of 1 through both *in vitro* metabolism and clinical studies.^{2,3} It was concluded from these studies that the presence

*Correspondence to: S. Feng, ElSohly Laboratories, Inc 5 Industrial Park Drive, Oxford, MS 38655, USA. E-mail: shixiafeng@hotmail.com

Copyright © 2002 John Wiley & Sons, Ltd.

of 2 in a urine specimen would confirm that the subject must have used marijuana or a related product. The deuterium labeled analog, 3, was required for quantitative analysis by GC/MS. Because of this important forensic application, in this communication, we wish to report the synthesis of 3 starting from divarinol (4) using our previously published procedure⁴ for the synthesis of d_6 -11-nor-9-carboxy- Δ^9 -THC, the C5 analog. Although the latter could also be used as an internal standard, 3 is superior in terms of analytical performance such as dynamic linearity range of analysis (1–1000 ng/ml versus 2–50 ng/ml for urine specimens) (see Figure 1).

As shown in Scheme 1, treatment of **4** with diethyl 2-acetylglutarate and $POCl_3$ gave the bicyclic coumarin **5** in 61% yield in several crops as

Scheme 1.

Copyright © 2002 John Wiley & Sons, Ltd.

J Label Compd Radiopharm 2002; 45: 577-581

a white solid: m.p. 161–163°C; EI-MS m/z: 318 (M⁺, 14%), 244 (100%); ¹H-NMR (CDCl₃, 300 MHz) δ : 6.64 (d, J=1.1 Hz, 1 H), 6.46 (m, 2 H including one exchangeable), 4.15 (q, J=7.2 Hz, 2 H), 2.99 (t, J=7.5 Hz, 2 H), 2.66 (s, 3 H), 2.54 (m, 4 H), 1.61 (m, 2 H), 1.27 (t, J=7.1 Hz, 3 H), 0.93 (t, J=7.3 Hz, 3 H); ¹³C-NMR (CDCl₃, 75 MHz) δ : 173.5, 162.1, 154.7, 153.5, 150.4, 146.7, 121.3, 111.9, 108.6, 107.8, 60.8, 37.6, 32.9, 23.7, 22.8, 19.2, 14.1, 13.7. *Anal.* Calculated for C₁₈H₂₂O₅: C, 67.92; H, 6.92. Found: C, 67.82; H, 7.33.

Cyclization of **5** by treatment with NaH in dry DMSO gave **6** in 52% as a white crystalline solid: m.p. 238.5–240°C; EI-MS m/z (as TMS derivative): 344 (M⁺,100%); ¹H-NMR (CDCl₃) δ : 7.54 (s,1 H, exchangeable), 6.74 (br s, 1 H), 6.57 (br s, 1 H), 4.20 (s, 2 H), 3.08 (t, J=7.1 Hz, 2 H), 2.70 (t, J=7.1 Hz, 2 H), 2.58 (t, J=7.7 Hz, 2 H), 1.65 (m, 2 H), 0.95 (t, J=7.4 Hz, 3 H); ¹³C-NMR (d_6 -DMSO, 75 MHz) δ : 207.7, 166.9, 160.1, 156.1, 155.9, 153.9, 146.6, 118.8, 106.0, 105.9, 43.3, 37.1, 36.9, 23.5, 23.0, 13.7. *Anal.* Calculated for C₁₆H₁₆O₄: C, 70.59; H, 5.88. Found: C, 70.30; H, 5.97.

By treatment of **6** with ethylene glycol and *p*-toluenesulfonic acid in benzene, the ketal **7** was obtained as a pale yellow solid (m.p. 157–159°C) in 90% yield and was identified by GC/MS: *m/z* (calculated MW 316 for $C_{18}H_{20}O_5$): 316 (M⁺,100%). Without further purification, **7** was treated with commercially available CD₃MgI (Aldrich Chemical Company, 99 + atom% D) followed by acidic hydrolysis to afford the racemic α,β -unsaturated ketone **8** in 60% yield as a pale-yellow crystalline solid: m.p. 220–223°C; EI-MS *m/z*: 292 (M⁺,65%), 274 (100%); ¹H-NMR (CDCl₃) δ : 10.7 (s, 1 H, exchangeable), 8.04 (d, *J*=2.1 Hz, 1 H), 6.52 (d, *J*=1.5 Hz, 1 H), 6.24 (d, *J*=1.5 Hz, 1 H), 2.82 (m, 1 H), 2.66 (m, 1 H), 2.44–2.57 (m, 3 H), 2.19 (m, 1 H), 1.56–1.79 (m, 3 H), 0.93 (t, *J*=7.3 Hz, 3 H); ¹³C-NMR (CDCl₃, 75 MHz) δ : 204.0, 159.2, 156.4, 154.1, 149.3, 122.2, 109.4, 108.9, 105.9, 77.1, 44.7, 37.9, 36.4, 24.3, 23.8, 13.9. *Anal.* Calculated for $C_{18}H_{16}D_6O_3$: C, 73.89; H, 7.81. Found: C, 73.45; H, 7.62.

Birch reduction of **8** gave *trans*-ketone **9** as a white solid in 60% yield: m.p. 171–172°C; EI-MS m/z: 294 (M⁺, 100%); ¹H-NMR (CDCl₃) δ : 8.17 (s, 1 H, exchangeable), 6.32 (d, J=1.5 Hz, 1 H), 6.23 (d, J=1.5 Hz, 1 H), 4.20 (ddd, J=2.4, 3.0, and 15.1 Hz, 1 H), 2.89 (m, 1 H), 2.63 (m, 1 H), 2.51 (m, 1 H), 2.43 (t, J=7.2 Hz, 2 H), 2.14 (m, 2 H), 1.97 (ddd, J=2.6, 12.1, and 14.2 Hz, 1 H), 1.52–1.63 (m, 3 H), 0.92 (t, J=7.3 Hz, 3 H); ¹³C-NMR (CDCl₃, 75 MHz) δ : 215.6, 155.5, 154.4, 143.3, 108.9, 107.8 (C-2 and C-4), 76.3, 47.2, 44.7, 40.8, 37.6, 34.7, 26.9, 24.1, 13.9.

J Label Compd Radiopharm 2002; 45: 577-581

Anal. Calculated for C₁₈H₁₈D₆O₃: C, 73.45; H, 8.46. Found: C, 73.77; H, 8.20.

Finally, **9** was converted to **3** by a Shapiro reaction as reported previously⁴ in 54% yield as a crude product which contained ca. 84% of the desired Δ^9 -isomer. Recrystallization twice from ether–hexane gave pure **3** as a white solid (99% by HPLC, $t_r = 4.48 \text{ min}$ using a Microsorb[®] C18 column, $3.9 \times 100 \text{ mm}$, CH₃CN–H₂O–HOAc 60:40: 0.05 at 1.0 ml/min, UV detector at 228 nm). The ¹H-NMR spectrum was identical to the previously reported spectrum of **2**,² the unlabeled analog of **3**, except for the total absence of the signals for the *gem*-dimethyl protons at the C-6 position. Specifically, the two singlets at δ 1.44 (3 H)

Figure 2. Comparison of EI-MS spectra of 3 (top) and 2 (bottom) as TBDMS derivatives

Copyright © 2002 John Wiley & Sons, Ltd.

J Label Compd Radiopharm 2002; 45: 577-581

and 1.12 (3 H) disappeared, indicating full deuteration of these methyl groups. The structure of **3** was further confirmed by comparing the EI-MS spectra of TBDMS derivatives of **3** ($M^+ = 550$) and **2** ($M^+ = 544$) obtained by heating with *N*-(*tert*-butyldimethylsilyl)-*N*-methyltrifluor-oacetamide containing 1% TBDMSCI (Figure 2). Our published data show³ that **3** is a superior internal standard to its C5 analog in GC-MS analysis of **2**.

References

- 1. ElSohly MA, Feng S, Murphy TP, et al. J Anal Toxicol 1999; 23: 222-224.
- 2. ElSohly MA, Feng S, Murphy TP, et al. J Anal Toxicol 2001; 25: 476–480.
- 3. ElSohly MA, deWit H, Wachtel SR, Feng S, Murphy TP. J Anal Toxicol 2001; 25: 565–571.
- 4. Feng S, ElSohly MA. J Label Compd Radiopharm 2000; 43: 655-662.